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Abstract 
 
Most materials exhibit different tensile and compressive strains given the same stress applied in tension or compression. These materi-

als are known as bimodular materials. An important model of bimodular materials is the criterion of positive-negative signs of principal 
stress proposed by Ambartsumyan. This model is mainly applicable to isotropic materials and deals with the principal stress state in a 
point. However, due to the inherent complexity of the constitutive relation, FEM based on iterative strategy and analytical methods based 
on a simplified mechanical model are required. In this paper, we review the basic assumptions of this model and its development, several 
innovative computational methods, and some important engineering applications. We also discuss the sequent key problems in this field. 
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1. Introduction 

Classical elasticity theory assumes that materials have the 
same elastic properties in tension and compression, but this is 
only a simplified interpretation, and does not account for ma-
terial nonlinearities. Many studies have indicated that most 
materials, including concrete, ceramics, graphite, and some 
composites, exhibit different tensile and compressive strains 
given the same stress applied in tension or compression. Thus, 
materials exhibit different elastic moduli in tension and com-
pression. These materials are known as bimodular materials 
[1-3]. Overall, there are two basic material models widely 
used in theoretical analysis within the engineering profession. 
One of these models is the criterion of positive-negative signs 
in the longitudinal strain of fibers proposed by Bert [4]. This 
model is mainly applicable to orthotropic materials, and is 
therefore widely used for research on laminated composites 
[5-10]. Another model is the criterion of positive-negative 
signs of principal stress proposed by Ambartsumyan [11]. 
This model is mainly applicable to isotropic materials and the 
earlier study is only seen in Kamiya’s work [12-14]. In me-
chanical engineering, the stress state in a principal direction is 
a key point in the analysis of some components like beams, 
columns, plates and shells. However, shear stresses and the 

resulting diagonal tension in principal direction must also be 
carefully considered in the design of structures. The discus-
sions in this paper will be focused on the latter model based on 
principal direction. 

The elasticity theory of different moduli in tension and 
compression presented by Ambartsumyan [11] asserts that 
Young’s modulus depends not only on material properties, but 
also on the stress state of the point in question. Therefore, the 
elastic modulus is related to the material, shape, boundary 
conditions, and external loads of the structure, and hence has 
nonlinear characteristics. Due to the materials nonlinearity, 
FEM based on iterative strategy and analytical methods based 
on a simplified mechanical model are required. In this paper, 
we will focus our discussion on the new progresses in numeri-
cal iteration and analytical model, and their applications in the 
engineering structures. 

 
2. Basic theory and development 

2.1 Basic theory 

Ambartsumyan linearized the nonlinear model, the second 
material model mentioned above, into two straight lines 
whose tangents at the origin are discontinuous, as shown in 
Fig. 1. 

This bimodular model follows the common rules of elastic 
continuum mechanics. The basic assumptions of this theory 
are as follows:  
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(1) The studied body is continuous, homogeneous and iso-
tropic.  

(2) Small deformation is assumed. 
(3) Young’s modulus of elasticity and Poisson’s ratio of 

materials are E+  and µ+ , respectively while the materials is 
in tension along certain direction; and they are E−  and µ− , 
respectively while is in compression along certain direction. 

(4) When the three principal stresses are uniformly positive 
or uniformly negative i.e. the first class, the three basic equa-
tions are essentially the same as those of classical theory. In 
the state of general stress, however, the sign of a certain prin-
cipal stress can be different from the sign of the other two 
principal stresses, i.e., the second class. When the signs of the 
three principal stresses are different, the differential equations 
of equilibrium and the geometrical equations are the same as 
those of classical materials theory, with the exception of the 
physical equations. 

(5) / /E Eµ µ+ + − −= is introduced and the assumption en-
sures symmetry of the flexibility matrix. 

In a spatial problem, let the stress and strain components in 
the principal coordinates , ,α β γ  be, { } ( )T

I α β γσ σ σ σ=  
and { } ( )T

I α β γε ε ε ε= , respectively. The constitutive model 
proposed by Ambartsumyan is 
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where ( , 1,2,3)ija i j =  denotes the flexibility coefficients 
determined by the polarity of the signs of the principal stresses. 
For instance, if 0, 0, 0α β γσ σ σ> < > , the physical relation 
should be 
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The rest of the physical equations may be deduced analo-

gously. Due to the fact that / /E Eµ µ+ + − −= , the symmetry 
of the flexibility matrix is assured. Therefore, 12 21a a= =  

13 31 23 32a a a a= = = . Eq. (2) may be rewritten as 
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,  (3) 

 
where only four flexibility coefficients, 11 22 33 12, , ,a a a a , are 
independent.  

 
2.2 Development 

In a state of complex stress, the determination of the flexi-
bility coefficients in material matrix is difficult because the 
elastic constants E+ , µ+  and E− , µ−  is related to the signs 
and the directions of the principal stresses, which are depend-
ent upon the external load applied, the structural shape, the 
boundary conditions and so on. Researchers gave the follow-
ing modified material models in the form of matrix: 

(1) Jones’s materials model 
In a state of two-dimensional stress, if 0ασ > , 0βσ < , the 

elasticity constants are [1, 2] 
 

11 22 12 21, ,1 1a a aa k k
E E E Eα β

µ µ
+ −

+ −

+ −= = = = − − , (4) 
 
where 
 

,k k βα
α β

α β α β

σσ
σ σ σ σ

= =
+ +

  (5) 

 
and kα , kβ  are the weighted coefficients. The constitutive 
relationship of Jones’s materials model in the form of matrix 
is under the influence of the signs and the magnitudes of the 
principal stresses. The weighted coefficients should be deter-
mined numerically by the further tests. 

(2) Vijayakumar’s and Li’s materials model 
Based on the principal stress, the principal strain and the 

strain energy in tension and compression, Vijayakumar and 
Rao [15] proposed that the computational model may be di-
vided into several small submatrixes and the areas in tension 
and compression may be divided into the less area to analyze. 
In addition, in the analysis of shell structures with different 
moduli, Li [16] proposed that the stress-strain relation may be 
expressed in several small parameters by means of asymptotic 
expansion. 

(3) Ye’s materials model 
Ye et al. [17, 18] proposed that the elasticity coefficients 
( , 1,2,3)ilC i l =  may be selected under the criterion on the 

signs in the principal strains, the relation between the principal 
stress and principal strain may be taken as 
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where the signs of ( , 1,2,3)ilC i l =  are determined by the po-

 
                      ( )   a E E+ −>                          ( )   b E E+ −<  
 
Fig. 1. Constitutive model of bimodular materials. 
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larity in the principal strains: if 0αε >  then ilC+  is adopted; 
if 0αε <  then ilC−  is adopted. The definition based on the 
principal strain is intuitionistic, and it is easy to test by ex-
periments. So, Ye’s criterion on the principal strain is innova-
tive. 
 

3. FEM based on iterative strategy 

3.1 Key problem 

Zhang and Wang [19] put forward FEM based on different 
moduli in tension and compression and pointed out that the 
essential difference between FEM on single modulus and 
FEM on different moduli lies in the elasticity matrix [ ]D . 
Their work established a theoretical basis for numerical itera-
tive computation based on different moduli in tension and 
compression. 

The total potential energy function of the computing model 
of finite elements is 
 

1

1[ { } [ ] { } { } { } { } { } ],
2 i i i

p

M
T T T
i i i i i i i

v v Si

D dv f F dv f P ds
σ

ε ε
=

Π =

− −∑ ∫ ∫ ∫
  

 (7) 
 
where M  is the total of elements, { }iε  is the strain matrix 
of element i, [ ]iD  is the elasticity matrix of element i, { }if  
is the displacement function of element i, { }iF is the body 
force matrix of element i, { }iP is the surface force matrix of 
element i. Under the assumption of / /E Eµ µ+ + − −= , the 
governing equation of FEM is 
 

[ ]{ } { }K d P= ,  (8) 
 
where [ ]K  is the global stiffness matrix, { }d  is the global 
nodal displacement matrix, { }P  is the global nodal load ma-
trix. 

The bimodular materials model proposed by Ambartsum-
yan asserts that Young’s modulus depends not only on mate-
rial properties, but also on the stress state of that point. There 
are only a few applications of the constitutive equation to 
stress analyses of components because of the inherent com-
plexity in the analysis of the bimodular materials, i.e. the elas-
ticity constants involved in the governing equations, which 
depend on the stress state of that point, are not correctly indi-
cated beforehand. In other words, except in particularly simple 
problems it is not easy to estimate the stress state in a point in 
the deformed body a prior. In some complex problems, it is 
necessary to resort to FEM based on an iterative strategy. 
Generally, there are two basic approaches: one is the direct 
iterative method based on a variable stiffness matrix, that is, in 
the each iteration, the principal stress state are determined 
again to modify the relevant elasticity matrix for the next it-
eration; the other is that the stiffness matrix may be triangular-
ized only once. However, the computational effort and the 

convergent rate of the latter will depend on the selection of 
initial values and parameters to a great extent. The following 
is intended to be a brief introduction to the main progresses of 
the numerical computation. 

 
3.2 Zhang’s improved algorithm 

Due to the slow convergent rate and the instability in itera-
tion, Zhang and Wang [19] put forward an improved algo-
rithm for accelerating convergence based on the idea of inte-
gral matrix. Thereafter, Liu and Zhang [20] and He et al. [21] 
perfected this improved algorithm in how to determine theo-
retically the shear modulus of elasticity. 

To satisfy the regression and accelerate convergence, Zhang 
and Wang [19] thought the matrices should have an integral 
feature. Therefore, shear stress and shear strain are set equal to 
zero to formulate physical Eq. (1), the principal stress and the 
principal strain (in a plane problem) may be written as  
 

{ } [ ] ,{ } [ ]T T
I Iα β αβ α β αβσ σ σ τ ε ε ε ε= = ,  (9) 

 
where 0αβ αβτ ε= = . The relation between stress and strain 
in the principal direction and the corresponding elasticity ma-
trix are, respectively 
 

11 12

21 22

33

0
{ } [ ]{ }, [ ] 0

0 0
I I

d d
D D d d

d
σ ε

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

,  (10) 

 
where 33d  is essentially the introduced shear modulus of 
elasticity. When elastic moduli in tension and compression are 
the same, it may be determined uniquely as 
 

33 2(1 )
Ed
µ

=
+

.  (11) 

 
However, it is very difficult to determine 33d  when differ-

ent moduli in tension and compression must be taken into 
account. As a result, the effective application of this conver-
gent algorithm was further limited by the indeterminacy of 
item 33d .  

When the point in question belongs to the first class dis-
cussed above, all principal stresses are uniformly positive 
( 2(1 )G E µ+ + += + ) or uniformly negative ( 2(1 )G E µ− − −= + ). 
The two shear moduli are essentially the same as those of 
classical theory, and they are thus easily obtained. However, 
when the point in question belongs to the second class dis-
cussed above, the signs of the three principal stresses are dif-
ferent. Because of this, we will inevitably encounter difficul-
ties when determining the shear modulus pattern. In past com-
putations, G has been taken as an average over the tensile-
compressive elasticity moduli and the tensile-compressive 
Poisson’s ratios, i.e. 
 

( ) / 2
2[1 ( ) / 2] 2(1 ) 2(1 )

E E E EG
µ µ µ µ

+ − + −

+ − + −
+ +

= =
+ + + + +

.  (12) 
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Eq. (12) neglects the influences brought about by the stress 
state of the point in question, so it is not an optimal solution. 
Based on the idea that G  should be weighted according to 
the ratio of tensile or compressive principal stresses to the sum 
of all principal stresses in absolute value, Liu and Zhang [20] 
proposed 
 

(1 )
2 (1 ) 2(1 )(1 )xy

E EG η η
η µ η µ

+ −

+ −

+ −
=

+ + − +
,  (13) 

 
where η  is a factor for accelerating convergence, and its 
value is the ratio of positive principal stress to the sum of the 
three principal stresses in absolute value, such that 0 1η≤ ≤ . 
By multiplying the items E+  and 2(1 )µ++  by η , and 
multiplying the items E−  and 2(1 )µ−+  by 1 η− , we eas-
ily obtain Eq. (13) from Eq. (12). Consequently, a strict deri-
vation in theory is necessary in order to eliminate the need for 
a priori assumptions. 

Using the general elasticity law from Ambartsumyan’s the-
ory, and combining with the idea of accelerated convergence, 
He et al. [21] lastly derived the exact pattern of the shear 
modulus of elasticity as follows 
 

(1 )
2 (1 ) 2(1 )(1 )xy

E E E EG
E E

η η
η µ η µ

+ − + −

+ − − +

+ −
=

+ + − +
.  (14) 

 
If the shear moduli in tension and compression, i.e. 

2(1 )G E µ+ + += + and 2(1 )G E µ− − −= + , are introduced in 
Eq. (14), then the pattern of shear modulus may be rewritten 
as 
 

1 1
12(1 ) 2(1 )(1 )

xyG

G GE E
η ηµ µη η

+ −

+ −+ −

= =
−+ + ++ −

  (15) 

 
It is seen that η  can directly act on the shear moduli in ten-
sion and compression, G+ and G− , therefore, the pattern is 
concise. Also, the computational examples indicated that this 
pattern has a better convergence, compared with the effect of 
the existing formulas. 

In addition, Zhang et al. [22] also made an error analysis on 
the assumption / /E Eµ µ+ + − −=  and gave the upper limit of 
errors. 

 
3.3 Ye’s improved algorithm 

Ye et al. [23, 24] proposed another algorithm more suitable 
for engineering applications, which the Poisson's ratio keeps 
constant while modifying the elasticity matrix. Ye et al. gave 
the following elasticity matrix  
 

[ ] [ ]
1 1 1 2

2 2 2 2

2 2 1 2
2 2 2 2

1 1 1 1

1 1 1 1

I I

E E E E

D or D
E E E E

ν ν
ν ν ν ν
ν ν
ν ν ν ν

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

,  (16) 

where ν  is the Poisson's ratio, 1E  and 2E  are the elastic-
ity moduli in tension and compression determined by the signs 
of the principal strains, respectively. The governing equation 
is 
 

 [ ] [ ] { } { }
2

TK K d P+
= .  (17) 

 
Besides, Ye et al. modified the stiffness matrix from all the 

existent models by using the idea on equivalence. Ye’s im-
proved algorithm is consistent with the criterion on principal 
strain i.e., Ye’s materials model, which has been introduced in 
Section 2.2. 
 
3.4 Initial stress technique 

Since the direct iteration based on a variable stiffness needs 
to form ceaselessly the new stiffness matrix and return cease-
lessly to solve, Yang et al. [25, 26] proposed that the initial 
stress method may be used to solve the elasticity problems 
with different moduli in tension and compression. At the same 
time, the employment of isoparametric elements and the 
judgment of the stress state on Gauss integral point may im-
prove the computational accuracy and speed. The stress-strain 
relations is 

 
{ } [ ]{ }Dσ ε= ,  (18) 
 

where [ ]D  is the symmetric matrix involved the stress state 
and will degenerate into the classical elastic matrix when 
moduli of elasticity in tension and compression are the same. 
Because [ ]D  is not known in advance, Eq. (18) may be re-
written as 
 

{ } [ ]{ } ([ ] [ ]){ }o oD D Dσ ε ε= + − ,  (19) 
 
where [ ]oD  is the given stress-strain matrix in terms of the 
classical theory. The iterative format may be built as follows 

 
*

1{ } { } [ ]{ }i iP P K d += − ,  (20) 
 

where { } [ ] ([ ({ } )] [ ])[ ] { }T
i i o iP B D d D B dV d∗ =Σ∫ −  and [ ] [ ]TK B=Σ∫  

[ ][ ]oD B dV . 
Using the initial stress technique only needs to triangularize 

the stiffness matrix once and avoids the inconvenience intro-
duced by the shear stiffness. However, the choice of the initial 
stiffness matrix [ ]oD  has influence on the computational 
workload and the convergent rate, and [ ]oD  should be modi-
fied timely in the iterative process. 

 
3.5 Smoothing function approach 

Yang et al. [27, 28] proposed that the smoothing technique 
may be used to deal with the bilinear stress-strain relations 
with different moduli in tension-compression, and built the 
FEM computational model based on the initial stress tech-
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nique mentioned above. Because the initial value of p in this 
method has direct influence on the accuracy and workload of 
computation, p should be properly adjusted in the iterative 
process. 
 

4. Analytical method based on simplified model 

4.1 Key problem 

In the theory presented by Ambartsumyan, although the dif-
ferential equations of equilibrium and the geometrical equa-
tions are the same as those of classical materials theory, with 
the exception of the physical equations, the governing equa-
tion used for solving takes great changes. For example, the 
consistency equation satisfied by the stress function ( , )x yϕ  
in the state of plane strain is [11] 
 

2 2 2 2 2
1 1 2 24 3

2 2
11

( , ) ( 2 ) 0
m m m mBx y

b x yy x
β β βσ σ σ

ϕ
∂ ∂ ∂

∇ + − + =
∂ ∂∂ ∂

, (21) 

 
where 4∇ denotes the double Laplacian operator, βσ  is one 
of the principal stresses, 1 2,m m  are the direction cosine of 
the principal stress βσ , 3 11,B b  are the quantities relevant to 
the flexibility coefficients. The problem degenerates into the 
classic expression 4 ( , ) 0x yϕ∇ =  when elasticity moduli in 
tension and compression are the same, that is, when 3 0B = . 
Besides the familiar item 4ϕ∇  in Eq. (21), there are some 
nonlinear items involving the principal stress and its direction 
cosine. To such a complicated equation, it is impossible to get 
the exact solution in theory, so it may be a feasible way to 
simplify the mechanical model to obtain the approximate ana-
lytical solution. 

Ambartsumyan [11] summarized a few analytical solutions 
of some simple problems, such as the one-dimensional tension 
problem of bars under deadweight, the one-dimensional prob-
lem of gravity bars with two ends fixed, the pure bending 
problem of beams and round bars, the axisymmetric problem 
of hollow cylinders (in two states of plane stress and plane 
strain), the pure bending problem of thin plates, the longitudi-
nal vibrations problem of prismatic bars, and so on. In these 
problems, there is no shear stress and the principal direction of 
a point in question coincides with the direction of the normal 
stress. The form of the physical equation may be determined 
in advance, and this opens up possibilities for analytical solu-
tions. However, in the state of complex stress, e.g., in a bend-
ing beam under a lateral force, shear stresses do exist, so the 
diagonal tension and diagonal compression of various inclina-
tions and magnitudes are inevitable. In such a case, it is im-
possible to determine the physical equation in advance, and 
thus, the solution to the problems is very difficult. 

Taking bending beams as studied bodies, Yao and Ye [29-
31] proposed a simplified mechanical model. The utilization 
of this model can extend the solutions from the state of simple 
stress, which is strictly obtained according to the physical 
relation on principal direction, into that of complex stress. The 

numerical results agree well with their analytical solutions. 
The following is a brief introduction about the simplified 
model. 

 
4.2 Simple stress state: pure bending 

The bimodular straight beam in pure bending has been 
solved firstly by Ambartsumyan [11]. Let us consider a rec-
tangular section beam with bimodulus in tension and com-
pression, as shown in Fig. 2, in which M is the bending mo-
ment and h is the section height. 

The curvature radius of the neutral axis, ρ , may be ex-
pressed as 
 

1 d
dx
θ

ρ
= ,  (22) 

 
where dx  and dθ  are respectively the length and rotation 
of differential element AB with a distance y from the neutral 
axis. The relative elongation of AB may be expressed as 
 

( )
x

y d d d yy
dx dx

ρ θ ρ θ θε
ρ

+ −
= = = .  (23) 

 
From Eq. (23), it may be seen that the longitudinal fiber be-

low the neutral axis is in compression and the longitudinal 
fiber above the neutral axis is in tension. Due to the simple 
stress state, the direction of the normal stress in a point exactly 
coincides with the direction of the principal stress in that point. 
Therefore, we suppose the section height and Young’s 
modulus in tensile area are 1h  and E+ , respectively, and 
those in compressive area are 2h  and E− , respectively. The 
constitutive relation in tension and compression may be writ-
ten as 

 

1

2

0

0

x

x

E y y h

E y h y

σ ρ

σ ρ

+ +

− −

⎧ = ≤ ≤⎪
⎨
⎪ = − ≤ ≤⎩

,  (24) 

 
where ,x xσ σ+ −  are the normal stresses acted on the section in 
tension and compression, respectively. 

The equilibrium conditions are 

 
 
Fig. 2. Bimodular beam under pure bending. 
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1

2

0

0
0

h

x x
h

bdy bdyσ σ− +

−
+ =∫ ∫   (25) 

 
and 
 

1

2

0

0

h

x x
h

ybdy ybdy Mσ σ− +

−
+ =∫ ∫ ,  (26) 

 
where b is the width of the beam section. Substituting Eq. (24) 
into (25) and integrating, we obtain 
 

2 2
2 1E h E h− += .  (27)  

 
Considering 1 2h h h= + , we may obtain 
 

1 2,E Eh h h h
E E E E

− +

+ − + −
= =

+ +
  (28) 

 
Substituting Eq. (24) into (26) and integrating, we obtain 
 

3 3
2 1

1 3M
E bh E bhρ − +=

+
  (29) 

 
If we introduce the flexural stiffness D, such that 
 

3 3
2 1( )

3
bD E h E h− += + ,  (30) 

 
then in the case of small deflection, the differential equation of 
equilibrium of bimodular beams in pure bending may be ex-
pressed as 
 

2

2
d y M

Ddx
= − .  (31) 

 
From Eqs. (24) and (31), we may obtain the normal stress 
 

1

2

0

0

x

x

E My y h
D
E My h y
D

σ

σ

+
+

−
−

⎧
= ≤ ≤⎪⎪

⎨
⎪ = − ≤ ≤⎪⎩

.  (32) 

 
When E E E+ −= = , all the formulas may be simplified as 
those in classical beams. 

 
4.3 Yao and Ye’s simplified model 

Yao and Ye’s mechanical model is founded on the follow-
ing three computational assumptions: (1) The cross section 
keeps plane in bending. (2) Bounded by the unknown neutral 
axis, the cross section is divided into the area in tension and 
the area in compression. Now, the definitions of tension and 
compression depend on the normal stress acting on the cross 
section, instead of the principal stress. (3) Shear stress makes 
no contribution to the position of the neutral axis, i.e. the de-

termination of the neutral axis depends only on the normal 
stress acted on the cross section and is free of the influences of 
the shear stress. It is seen that there is some inherent relation-
ship between assumptions (2) and (3) mentioned above be-
cause once subarea is assumed, how to determine the position 
of the neutral axis will become the key problem in a state of 
complex stress. 
 
4.4 Complex stress state: lateral force bending 

Via the simplified model mentioned above, Yao and Ye 
[30] extended the results from the case of pure bending into 
the case of lateral force bending. When a bimodular beams is 
under the action of a lateral force, not only the bending mo-
ment M but also the shear force Q acts on the cross section of 
the beam, that is, not only the normal stress xσ  but also the 
shear stress xyτ  acts on a point in question and the point is in 
a complex stress state. The diagonal tension and diagonal 
compression of various inclinations and magnitudes are inevi-
table. In this case, the neutral axis will not exist if we strictly 
define tension and compression based on the principal direc-
tion. However, from the viewpoint of phenomenalism, a bend-
ing beam will always form a deflected shape under the action 
of a lateral force, and the lower part of the beam is in tension 
and the higher part is in compression. Therefore, the neutral 
axis in the case of lateral force bending does exist, like the 
case of pure bending.  

The formulas of the shear stress may be derived by isolating 
the differential element and considering its equilibrium [30], 
or by a more convenient method, equivalent section method 
[32]. In the case of lateral force bending, the formulas of shear 
stress are 
 

2
2

12

2
2

22

3 ( )1 0
2

3 ( )1 0
2

xy

xy

Q E E y y h
bh E h

Q E E y h y
bh E h

τ

τ

+ −
+

−

+ −
−

+

⎡ ⎤+⎢ ⎥= − ≤ ≤
⎢ ⎥⎣ ⎦
⎡ ⎤+
⎢ ⎥= − − ≤ ≤
⎢ ⎥⎣ ⎦

  (33) 

 
when E E E+ −= = , Eq. (33) may be simplified as that in 
classical beams. 

Yao and Ye analytically investigated a bimodular bending-
compression column [29], a bimodular beam subjected to a 
lateral force [30], a retaining wall with different moduli in 
tension and compression [31]. Moreover, Yao and Ye com-
pared the analytical solutions of the three problems above with 
the counterparts in the classical theory and also with the nu-
merical results based on FEM. They also gave some ideas 
about structural optimization. Their study indicates that the 
simplified mechanical model is effective for the analytical 
solution of beams and columns. 
 
4.5 Further research on the existing model 

Since the existent derivative pattern is complicate, He et al. 
[32] proposed that the bimodular problems may be turned into 
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the classical problems via the equivalent section method, and 
consequently, bending beams subjected to lateral forces and 
bending-compression column with different moduli can be 
solved in a simple way. Utilizing the continuity conditions of 
the stress on the neutral layer, He et al. [33] obtained elasticity 
solutions of a bimodular simply-supported beam under uni-
formly-distributed loads. Also, they analyzed the influences 
introduced by plane section assumption and the bimodularity 
of materials, respectively. Regarding bimodular bending-
compression column as a boundary-value problem, He et al. 
[34] obtained approximate elasticity solutions of the problem. 
He et al. [35] analyzed symmetry and antisymmetry of a bi-
modular elastic structure and concluded that antisymmetry 
will change due to the bimodular constitutive model. 

The flexural rigidity of the structures plays an important role 
in solving bimodular bending problems. In most cases, the in-
fluences introduced by the bimodularity of materials are com-
pletely integrated into the flexural stiffness. By the simple sub-
stitution to the flexural stiffness, we can readily obtain the solu-
tions of the bimodular problems directly from the known classi-
cal problems solutions for a variety of boundary conditions. 

It is no doubt that this simplified model is an important as-
sumption because the existent analytical solutions concerning 
beams and columns are founded on this assumption. Although 
it has been proved in the range of beam theory, this model still 
needs an investigation based on 2-D plate theory. It is well-
known that there are some similarities between the assump-
tions in classical beam theory and famous Kirchhoff hypothe-
ses in small deflection theory of thin plates. It could be feasi-
ble that using Kirchhoff hypotheses demonstrates this impor-
tant conclusion about the neutral axis, and at the same time, 
opens up possibilities for the solving of bimodular plate prob-
lems. The relevant work is in progress. 
 

5. Engineering applications 

Wu et al. [36] calculated an axisymmetric shell by FEM 
based on bimodulus; Zhang and Wang [37] analyzed rigid 
frames by FEM based on bimodulus; Yang et al. [38] pre-
sented a high-precision finite element for bimodular shells; 
Zhang et al. [39] studied influences on mechanical perform-
ance of insulators introduced by the bimodularity of materials, 
and optimized the shape of the suspended insulator [40, 41]; 
Gong et al. [42] studied expansion of circular cavities with 
different moduli in tension and compression; Guan et al. [43] 
analyzed application on rubber water stop in water conser-
vancy strobe by FEM based on large deformation and differ-
ent moduli; Gao and Liu [44] studied the canopy of plane by 
theory with different moduli; Gao et al. [45, 46] numerically 
analyzed bimodular bending plates and thin-shell structures; 
Gao et al. [47] analyzed structural dynamic characteristics of 
plates and shells by the theory with different moduli; Liu and 
Zhao [48] analyzed the stress and the deformation of dams by 
FEM based on bimodulus; Zhu et al. [49] obtained analytical 
solution on surrounding rocks in tunnels with different 

moduli; Luo et al. [50] studied expansion of cylindrical cavi-
ties in strain-softening material with different moduli; Yao and 
Ye [31] studied analytical and numerical solution of the re-
taining wall based on the theory of different moduli; Zhou et 
al. [51] derived closed-form analytical solution for beams on 
elastic foundation with different moduli in tension and com-
pression. These results show that the bimodularity of materials 
have great influence on the structural stiffness. 

For a long time, the analysis and the design of structures 
have followed the classical elasticity theory based on single 
modulus. In some cases, however, the neglect of this materials 
nonlinearity maybe lead to a great computing error because 
the constitutive model adopted falls short of the actual me-
chanical performances of materials. This may be the key point 
which makes structures damage and even failure. Elasticity 
theory with different moduli in tension and compression deals 
with many disciplines (e.g. materials, structure, mechanics 
etc.), and in the long run, it is worthy of some consideration 
from academic bodies and engineering fields. 

 
6. Conclusions 

In this paper, we introduce the basic assumptions of the bi-
modular materials model proposed by Ambartsumyan and its 
development, review FEM based on iterative strategy, analyti-
cal method based on a simplified mechanical model, and some 
important engineering applications.  

We also point out two challenging problems for the further 
study: (1) Is tension or compression defined from the point of 
view of stress or strain? The two macroscopic mechanical 
models of bimodular materials, the criterion on signs in longi-
tudinal strain of fibers presented by Bert and the criterion on 
signs in the principal stress presented by Ambartsumyan, es-
sentially deal with the definition on tension and compression, 
i.e., it is defined either by stress or by strain. For reasons given 
above, some contrastive researches may be done. (2) This 
bimodular elasticity theory founded by Ambartsumyan has 
lacked the experimental results of elasticity coefficients in 
complex states of stress. Therefore, the proper mechanical 
model should be rebuilt by extensive experiments.  

The work mentioned in this paper will be helpful for pre-
dicting the mechanical behaviors of bimodular materials. In 
particular, these results may be useful to analyze concrete-like 
materials and fiber-reinforced composite materials that contain 
cracks and undergoing contact, whose macroscopic constitu-
tive behavior depends on the direction of the macroscopic 
strain, similarly to the case of the bimodular materials [52-54]. 
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Nomenclature------------------------------------------------------------------------ 

E   :  Young’s modulus of elasticity 
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µ   :  Poisson’s ratio 
σ  :  Normal stress 
τ   :  Shear stress 
ε   :  Normal strain 
γ   :  Shear strain 
a,d,B,C  :  Elasticity coefficients 
kα kβ   :  Weighted coefficients 
[ ]D   :  Elasticity matrix 
[ ]K   :  Global stiffness matrix 
{ }d   : Global nodal displacement matrix 
{ }P   :  Global nodal load matrix. 
G  :  Shear modulus of elasticity 
η   :  Convergence factor 
ρ   :  Curvature radius 
h :  Cross-section height 
b  :  Cross-section width 
A  :  Cross-section area 
M  :  Bending moment 
Q  :  Shear force 
D  :  Flexural Stiffness of beam 
 
Superscript 

,+ −   : Quantities related tension and compression,  
  respectively 
T  :  Transpose 
 
Subscripts 

, ,x y z   : General coordinates system 
, ,α β γ   : Principal coordinates system 

I  :  Principal Stress direction 
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